

Jennifer Siegal-Gaskins
Caltech

The nature of dark matter

Observational evidence indicates:

- non-baryonic
- neutral
- virtually collisionless

Additional assumptions for this talk:

- dark matter is a weakly-interacting massive particle (WIMP)
- GeV TeV mass scale
- can pair annihilate or decay to produce standard model particles
- accounts for the measured dark matter density

To detect an uncertain (and likely subdominant) signal in the presence of uncertain backgrounds

Strategy

- the "best" approach depends on both the expected dark matter signal and the target source or emission
- complementarity is key for making the most of the data: info from other dark matter searches (indirect and otherwise) and from studies of astrophysical sources is essential
 - multiwavelength (and multimessenger) studies can leverage searches beyond a single experiment and help alleviate issues with systematics
 - making full use of complementary results will help to efficiently direct future efforts

Tools

- I. spectral information
- 2. spatial information
- 3. know your backgrounds and impostor signals better

Energy spectra

- dark matter gives bumps, lines, cut-offs
- many astrophysical sources make power laws and may have exponential cut-offs
- some astrophysical sources
 (e.g., pulsars) also give
 bumps

Spectra calculated with PPPC 4 DM ID [Cirelli et al. 2010]

Energy spectra

- dark matter gives bumps, lines, cut-offs
- many astrophysical sources make power laws and may have exponential cut-offs
- some astrophysical sources

 (e.g., pulsars) also give
 bumps

JSG et al. MNRAS 415, 1074–1082 (2011)

The Fermi Large Area Telescope (LAT)

Credit: NASA/General Dynamics

The Cherenkov Telescope Array (CTA)

Current and future capabilities

Funk et al. 2012

GAMMA-400

launch scheduled for 2018

Fermi LAT and GAMMA-400 capabilities

but, GAMMA-400 has a smaller effective area

	Space-based experiments			Ground-based experiments			
	Fermi	AMS-2	GAMMA- 400	H.E.S.SII	MAGIC	CTA	
Energy range, GeV	0.02-300	10-1000	0.1-3000	> 30	> 50	> 20	
Field-of-view, sr	2.4	0.4	~1.2	0.01	0.01	0.1	
Effective area, m ²	0.8	0.2	~0.4	10 ⁵	10 ⁵	10 ⁶	
Angular resolution $(E_{\gamma} > 100 \text{ GeV})$	0.2°	1.0°	~0.01°	0.07°	0.05°	0.06°	
Energy resolution $(E_{\gamma} > 100 \text{ GeV})$	10%	2%	~1%	15%	15%	10%	

	Space-based experiments			Ground-ba	Ground-based experiments			
	Fermi	AMS-2	GAMMA- 400	H.E.S.SII	MAGIC	СТА		
Energy range, GeV	0.02-300	10-1000	0.1-3000	> 30	> 50	> 20		
Field-of-view, sr	2.4	0.4	~1.2	0.01	0.01	0.1		
Effective area, m ²	0.8	0.2	~0.4	10 ⁵	10 ⁵	10 ⁶		
Angular resolution $(E_{\gamma} > 100 \text{ GeV})$	0.2°	1.0°	~0.01°	0.07°	0.05°	0.06°		
Energy resolution $(E_{\gamma} > 100 \text{ GeV})$	10%	2%	~1%	15%	15%	10%		

	Space-based experiments			Ground-ba	l-based experiments			
	Fermi	AMS-2	GAMMA- 400	H.E.S.SII	MAGIC	CTA		
Energy range, GeV	0.02-300	10-1000	0.1-3000	> 30	> 50	> 20		
Field-of-view, sr	2.4	0.4	~1.2	0.01	0.01	0.1		
Effective area, m ²	0.8	0.2	~0.4	10 ⁵	10^5	10^6		
Angular resolution $(E_{\gamma} > 100 \text{ GeV})$	0.2°	1.0°	~0.01°	0.07°	0.05°	0.06°		
Energy resolution $(E_{\gamma} > 100 \text{ GeV})$	10%	2%	~1%	15%	15%	10%		

	Space-based experiments			Ground-based experiments			
	Fermi	AMS-2	GAMMA- 400	H.E.S.SII	MAGIC	CTA	
Energy range, GeV	0.02-300	10-1000	0.1-3000	> 30	> 50	> 20	
Field-of-view, sr	2.4	0.4	~1.2	0.01	0.01	0.1	
Effective area, m ²	0.8	0.2	~0.4	10 ⁵	10 ⁵	10 ⁶	
Angular resolution $(E_{\gamma} > 100 \text{ GeV})$	0.2°	1.0°	~0.01°	0.07°	0.05°	0.06°	
Energy resolution $(E_{\gamma} > 100 \text{ GeV})$	10%	2%	~1%	15%	15%	10%	

Selected gamma-ray dark matter search targets

The inner galaxy

The high-energy inner galaxy

Fermi + HESS GC energy spectrum

Cases G.1 and G.2 (data set A)

The multiwavelength inner galaxy

VLA @ 330 MHz

HESS > 380 GeV

Aharonian et al. 2006

Dark matter in the inner galaxy

Point source or extended emission? Testing this hypothesis with CTA

Linden & Profumo 2012

Dark matter in the inner galaxy

- likely the brightest dark matter source in the gammaray sky, but...
- embedded in large and complicated backgrounds:
 - resolved sources
 - unresolved sources
 - diffuse emission

The inner galaxy

- I. spectrally: DM signal may be subdominant, making a spectral signature difficult to identify
- 2. spatially: strong spatial signatures may be present (source of uncertainty), but not accessible with current data
- 3. know your backgrounds and impostor signals better: pulsars and other astrophysical sources, hadronic emission...

The inner galaxy

- I. spectrally: DM signal may be subdominant, making a spectral signature difficult to identify
- 2. spatially: strong spatial signatures may be present (source of uncertainty), but not accessible with current data
- 3. know your backgrounds and impostor signals better: pulsars and other astrophysical sources, hadronic emission...

I+2 = improved angular resolution could help to determine morphology of emission and address differences between GeV and TeV results

2+3 = multiwavelength studies can access smaller angular scales and could pin down origin and spatial distribution of some components

The isotropic gamma-ray background

What is making the diffuse gamma-ray background?

Energy spectrum of the Fermi-LAT isotropic gamma-ray background (IGRB)

Credit: NASA/DOE/Fermi LAT Collaboration

What is making the diffuse gamma-ray background?

Expected contribution of source populations to the IGRB

Sum is ~ 60-100% of IGRB intensity (energy-dependent)

Dark matter signals in the IGRB

Abdo et al., JCAP 04 014 (2010)

Constraints from the IGRB

Getting rid of the IGRB

- the IGRB is time-dependent: will get smaller as more sources are resolved
- future IGRB measurements will lead to improved DM sensitivity

see also Abazajian, Blanchet, Harding 2012

but... we can do better than just detecting more of the unresolved sources:

we can model them or use other techniques and observables to identify their contribution to the IGRB

Detecting unresolved sources with anisotropies

- diffuse emission that originates from one or more unresolved source populations will contain fluctuations on small angular scales due to variations in the number density of sources in different sky directions
- the amplitude and energy dependence of the anisotropy can reveal the presence of multiple source populations and constrain their properties

Detecting unresolved sources with anisotropies

- diffuse emission that originates from one or more unresolved source populations will contain fluctuations on small angular scales due to variations in the number density of sources in different sky directions
- the amplitude and energy dependence of the anisotropy can reveal the presence of multiple source populations and constrain their properties

Anisotropy is another IGRB observable!!!

Gamma-ray anisotropies from dark matter

gamma rays from DM annihilation and decay in Galactic and extragalactic dark matter structures could imprint small angular scale fluctuations in the diffuse gamma-ray background

Gamma rays from Galactic DM

before accounting for instrument PSF

after convolving with 0.1° beam

JSG, JCAP 10(2008)040

The angular power spectrum

$$I(\psi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\psi) \qquad C_{\ell} = \langle |a_{\ell m}|^2 \rangle$$

- ullet intensity angular power spectrum: $\,C_{\ell}$
 - indicates dimensionful amplitude of anisotropy
- fluctuation angular power spectrum: $\frac{C_\ell}{\langle I \rangle^2}$
 - dimensionless, independent of intensity normalization
 - amplitude for a single source class is the same in all energy bins (if all members have same energy spectrum)

Angular power spectra of unresolved gamma-ray sources

- the angular power spectrum of many gamma-ray source classes (except dark matter) is dominated by the Poisson (shot noise) component for multipoles greater than ~ 10
- Poisson angular power arises from unclustered point sources and takes the same value at all multipoles

predicted fluctuation angular power $C_\ell/\langle I \rangle^2$ [sr] at I = 100 for a single source class (LARGE UNCERTAINTIES):

- blazars: ~ 2e-4
- starforming galaxies: ~ 2e-7
- dark matter: ~ le-6 to ~ le-4
- MSPs: ~ 0.03

Angular power spectra of dark matter signals

 the angular power spectrum of dark matter annihilation and decay falls off faster than Poisson at multipoles above ~ 100

Fornasa, Zavala, Sanchez-Conde et al. 2012

Multipole

Multipole

 current measurement uncertainties are too large to identify a dark matter component via scale dependence; may be possible with future measurements

Anisotropy constraints on dark matter

Fluctuation anisotropy energy spectrum

- small angular scale IGRB anisotropy measured for the first time with the Fermi LAT
- angular power measurement constrains contribution of individual source classes, including DM, to the IGRB intensity

Ackermann et al. [Fermi LAT Collaboration]
PRD 85, 083007 (2012)

Constraints from best-fit constant fluctuation angular power (I ≥ I50) measured in the data and foreground-cleaned data

Source class	Predicted $C_{100}/\langle I \rangle^2$	Maximum fraction of IGRB intensity		
	[sr]	DATA	DATA:CLEANED	
Blazars	2×10^{-4}	21%	19%	
Star-forming galaxies	2×10^{-7}	100%	100%	
Extragalactic dark matter annihilation	1×10^{-5}	95%	83%	
Galactic dark matter annihilation	5×10^{-5}	43%	37%	
Millisecond pulsars	3×10^{-2}	1.7%	1.5%	

Identifying IGRB contributions

$$I_{\text{tot}}(E) = I_1(E) + I_2(E)$$

$$C_{\ell,\text{tot}}(E) = C_{\ell,1}(E) + C_{\ell,2}(E)$$

in a two-component IGRB scenario, where the components are uncorrelated,

and one component dominates the anisotropy at low energies,

features observed in the anisotropy energy spectrum can be used to extract each component's intensity spectrum

without a priori assumptions about the shape of the intensity spectra or anisotropy properties!

$$\hat{C}_{\ell,\text{tot}}(E) = \left(\frac{I_1(E)}{I_{\text{tot}}(E)}\right)^2 \hat{C}_{\ell,1} + \left(\frac{I_2(E)}{I_{\text{tot}}(E)}\right)^2 \hat{C}_{\ell,2}$$

Separating signals with energy-dependent anisotropy

TABLE I: Summary of two-component decomposition techniques.

Method	Observational Signature	Inferred Properties of Components	Intensity Normalization Recovered?	Fluctuation Angular Power Recovered?
Double plateau	Plateaus at both high and low energies observed in anisotropy energy spectrum	One source dominant in anisotropy at low energies, other source dominant at high energies	Yes	Yes
Low-Anisotropy Plateau	Anisotropy energy spectrum rises from (falls to) a low- anisotropy plateau at low (high) energy	Source that is subdominant in intensity is much more anisotropic than the domi- nant source	No	No
High-Anisotropy Plateau	Anisotropy energy spectrum falls from (rises to) a high- anisotropy plateau at low (high) energy	Source that is subdominant in intensity is much less anisotropic than the domi- nant source	Yes	No
Known Zero-Anisotropy Component	None; requires a priori knowledge that one of the two components is isotropic	One source is completely isotropic	No	No
Minimum	Minimum observed in the anisotropy energy spectrum	Both source components have comparable intensity and anisotropy such that Eq. 20 is satisfied at some energy	Yes	Yes
Multiple- ℓ Measurements	Two distinct anisotropy energy spectra can be obtained at two different ℓ	\hat{C}_{ℓ} is a function of ℓ for at least one source such that two distinct anisotropy energy spectra can be obtained at different ℓ	Yes	Yes

Example IGRB decomposition

Example observed intensity spectrum and anisotropy energy spectrum

red = published LAT measurements

black = example scenario for 10 yrs LAT observations

41

Example IGRB decomposition

Decomposed energy spectra

red = published LAT measurements

black = example scenario for 10 yrs LAT observations

The IGRB

- I. spectrally: DM signal must be subdominant since a spectral signature is not obvious in the IGRB energy spectrum
- 2. spatially: signal and backgrounds are mostly isotropic but with potentially different small-scale features
- 3. know your backgrounds and impostor signals better: pinning down contribution from astrophysical sources a major challenge but could significantly improve dark matter sensitivity

The IGRB

- spectrally: DM signal must be subdominant since a spectral signature is not obvious in the IGRB energy spectrum
- 2. spatially: signal and backgrounds are mostly isotropic but with potentially different small-scale features
- 3. know your backgrounds and impostor signals better: pinning down contribution from astrophysical sources a major challenge but could significantly improve dark matter sensitivity

I+2 = combining spectral and spatial information could allow contributions from multiple components to be disentangled

Summary

- this is an exciting time! searches already reaching interesting regions of parameter space and some targets show hints of a detection!
- search strategies need to be optimized for different dark matter models, targets, and instruments
- complementarity should be an important factor in designing searches and should be taken advantage of wherever possible
- improved angular resolution of future gamma-ray instruments may be key to disentangling a dark matter signal by separating emission regions, associating astrophysical sources, and mapping spatial signatures of a dark matter signal
- combining spectral and spatial features can improve sensitivity to subdominant signals